

 NPS-CS-03-006

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Approved for public release; distribution is unlimited.

Prepared for: Missile Defense Agency
 7100 Defense Pentagon
 Washington, D.C. 20301-7100

Developing Highly Predictable System Behavior in
Real-Time Battle-Management Software

by

Dale Scott Caffall and James Bret Michael

29 September 2003

 NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM David R. Ellison, USN Richard Elster
Superintendent Provost

This report was prepared for Naval Postgraduate School as part of Dale Scott Caffall’s dissertation
research and James Bret Michael’s sponsored research for the Missile Defense Agency.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Dale Scott Caffall
C2BMC Chief Engineer
Missile Defense Agency

James Bret Michael
Associate Professor of Computer Science
Naval Postgraduate School

Reviewed by: Released by:

________________________ ______________________________
Peter J. Denning Leonard A. Ferrari
Chairman, Department of Computer Science Associate Provost and
 Dean of Research

REPORT DOCUMENTATION PAGE

Form approved

OMB No 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
29 September 2003

3. REPORT TYPE AND DATES COVERED
 Technical Report

4. TITLE AND SUBTITLE
 Developing Highly Predictable System Behavior in Real-Time Battle-Management Software

5. FUNDING
 None

6. AUTHOR(S)
 Dale Scott Caffall and James Bret Michael

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Department of Computer Science
 Naval Postgraduate School
 833 Dyer Road, Code CS
 Monterey, CA 93943-5118

8. PERFORMING ORGANIZATION
 REPORT NUMBER
 NPS-CS-03-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words.)

Given that battle-management solutions in system-of-systems environment are separately designed and developed on various operating platforms in
different languages, predicting battle-management behavior of system-of-systems is not possible. As a rule, battle-management is executed at the system
level rather than the desired system-of-systems level.

Typically, C4 systems are non-real-time systems. Traditionally, weapon systems are real-time systems. If we are to match the performance of weapon
systems and avoid the negative impact of forcing synchronization of battle manager software with weapon systems for messaging, then we must develop
the battle manager as real-time software.

We advocate the development of battle-management software as a real-time set of system functionality that addresses warfighter usage. To achieve the
level of desired predictable battle-management behavior, we maintain that it is essential to develop a formal representation that captures the desired battle
manager system behavior and test the formal representation against the expected battle-management properties.

Furthermore, we assert that it is critical to develop the battle manager as a real-time software-intensive system to ensure the schedulability of battle-
management tasks and provide for concurrent execution of such tasks where applicable.

14. SUBJECT TERMS
Battle-management, real-time, temporal logic, assertions, model-checking

15. NUMBER OF
PAGES
 49

 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
 ABSTRACT

UL
NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std 239-18

 1

Developing Highly Predictable System Behavior in
Real-Time Battle-Management Software

Dale Scott Caffall and James Bret Michael

Naval Postgraduate School

Abstract
Given that battle-management solutions in system-of-systems environment are separately
designed and developed on various operating platforms in different languages, predicting
battle-management behavior of system-of-systems is not possible. As a rule, battle
management is executed at the system level rather than the desired system-of-systems
level.

Typically, C4 systems are non-real-time systems. Traditionally, weapon systems are
real-time systems. If we are to match the performance of weapon systems and avoid the
negative impact of forcing synchronization of battle manager software with weapon
systems for messaging, then we must develop the battle manager as real-time software.

We advocate the development of battle-management software as a real-time set of system
functionality that addresses warfighter usage. To achieve the level of desired predictable
battle-management behavior, we maintain that it is essential to develop a formal
representation that captures the desired battle manager system behavior and test the
formal representation against the expected battle-management properties.

Furthermore, we assert that it is critical to develop the battle manager as a real-time
software-intensive system to ensure the schedulability of battle-management tasks and
provide for concurrent execution of such tasks where applicable.

Introduction
The annals of human conflict are replete with the terrible results of the traditional war
strategy of attrition in which opposing forces attempt to inflict more casualties on the
enemy than the enemy can sustain and maintain a viable military force. This “mass-on-
mass” strategy resulted in staggering losses of life in countless wars. For example,
623,026 soldiers lost their lives in the four years of the U.S. Civil War. At Antietam, the
combined casualties of Union and Confederate forces totaled 26,134 soldiers on a single
day of battle. [Leckie 90] The war of attrition concept was a costly strategy in terms of
human life.

During the past decade, the Department of Defense (DoD) shifted military tactics from
the traditional war of attrition to a transformational concept of full-spectrum dominance:
the ability of US forces, operating unilaterally or in combination with multinational and
interagency partners, to defeat any adversary and control any situation across the full
range of military operations.

 2

In Joint Vision 2020 (JV 2020), the Chairman, Joint Chiefs of Staff includes the
following operational concepts that will support the achievement of full-spectrum
dominance [Chairman 00]:

1. Dominant maneuver is the ability of joint forces to gain positional advantage
with decisive speed and overwhelming operational tempo in the achievement of assigned
military tasks.

2. Focused logistics is the ability to provide the joint force with the right personnel,
equipment, and supplies in the right place, at the right time, and in the right quantity,
across the full range of military operations.

3. Full dimensional protection is the ability of the joint force to protect its
personnel and other assets required to decisively execute assigned tasks.

4. Precision engagement is the ability of joint forces to locate, surveil, discern, and
track objectives or targets; select, organize, and use the correct systems; generate desired
effects, assess results; and reengage with decisive speed and overwhelming operational
tempo as required, throughout the full range of military operations.

We find the importance of battle management within the concept of precision
engagement. For this technical report, we will define battle management as the decisions
and actions executed in direct response to the activities of enemy forces in support of the
Joint Chiefs of Staff’s concept of precision engagement. [DA 96] Battle managers must
rapidly make decisions to counter both enemy actions and force movements. Battle
managers must correctly cope with the fog-of-war conditions that are ever-present during
the prosecution of the war. The success or failure of the battle-management functions
will determine the success or failure of joint forces with respect to the achievement of
their assigned objectives. [Douglas 99]

Hypothesis
We believe that it is possible to develop a globally distributed, real-time software-
intensive battle-management system that exhibits highly predictable system-software
behavior, in which the system receives sensor information from land, sea, air, and space,
and commits land-, sea-, air-, and space-based weapons to fire at identified targets.
Furthermore, we believe that it is possible to employ linear temporal logic and model
checking to a globally distributed, real-time battle-management system to develop
desired system behavior to include the weapons-commit logic. We believe that the
concepts in this technical report will extend the software engineering body of knowledge
as follows:

1. Demonstrate that acquisition organizations can develop real-time software-
intensive distributed systems that exhibit a high degree of predictability of system
behavior.

2. Provide an engineering-based approach for developing a battle-management
kernel (BMK) for missile-defense and other types of real-time systems used by
combatant commands.

 3

Battle-management software development concept
Ballistic missile defense (BMD) serves as the case study of the complex acquisition of
battle-management systems because BMD encompasses an amalgamation of
characteristics that are not found in single-system developments.1 Some of the key
characteristics of this system-of-systems are the following: (1) a globally-distributed
network, (2) an operational battlespace that includes land, sea, air, and space, (3)
capability to address multiple targets that can threaten a specific theater of operations or
region of the world,2 (4) management of concurrent battlespace activities, (5) some level
of automated decision making regarding the release or hold of lethal weapons, and (6)
stringent requirements for high levels of trustworthiness of the systems that provide BMD
capabilities due to the fact that the threats to be encountered consist of weapons of mass
destruction. Item number six makes unpredictable system behavior untenable from the
public-policy, functional, and safety perspectives.

A BMK consists of the set of system components that are necessary to provide correct
real-time execution of battle-management tasks in a system-of-systems context, both in
nominal and degraded modes of system operation. To provide the reader with concrete
examples of how we propose to design and test such a kernel, we describe some of the
software-intensive aspects of battle management, including exercising rules of
engagement, performing discrimination and correlation, conducting feature-aided
tracking, and estimating the launch, impact, and intercept points of threat missiles.

A BMK is similar in purpose to an operating system (OS) kernel in that both kernels
manage resources shared by competing entities. In the case of an OS kernel, the
competing entities are computer processes vying for resources such as the CPU and
memory. In the case of a BMK, the competing entities are all of the components of the
system-of-systems that comprise the battle-management system, such as the C2 and
weapon systems. The components in the kernel are expected to be stable compared to the
other components in the system-of-systems. For instance, device drivers tend to be
updated frequently and therefore in principle should not be included in the operating
system kernel. If they are included, and even worse, tightly coupled to OS management
functions, then it becomes challenging to make modifications to the kernel that do not
affect other parts of the kernel. We would like to apply this same reasoning to BMK in
order to simplify the design and maintenance of the kernels.

We also draw a parallel between BMK and safety kernels. The functions to be included
in a safety kernel are those that must be performed to maintain a safe system state or
bring a system back into a safe state after the occurrence of a safety-critical event. No
other functions may be included in a safety kernel. An automated train protection (ATP)
system is an example of a safety kernel. Such kernels are well documented, validated,

1 A single-system development is the creation and maintenance of a system that is intended to be operated
in isolation of other systems, or alternatively is intended to operate in a cooperative manner with other
systems but the system is capable of operating in a standalone configuration; synonyms for this type of
system include “stovepipe” or “standalone” system. A system-of-systems development is an antonym for
single-system development.
2 The primary mission of the U.S. Ballistic Missile Defense System is to protect the United States and its
territories from exo-atmospheric threat missiles. However, the U.S. must also weigh the benefits and risks
of engaging such threats within the airspace of other nations.

 4

and verified before being considered for certification and accreditation. We view battle-
management kernels in a similar light: they must work as advertised because the ability
of the entire system-of-systems to be able to conduct warfare in the BMD battlespace is
dependent on the BMK.

In our proposed approach, we envision software engineers developing the BMK as a real-
time set of system functionality that addresses its use by warfighters, starting from a
high-level statement of capabilities and refining these statements into successively lower
levels of system artifacts. We define the BMK to be the software that contains the basic
functions of battle management that will remain stable over time. Derived from the kill
chain, these basic battle-management functions are called tasks, and will manage the use
of the system’s computing resources to ensure that all time-critical, battle-management
events are processed as efficiently as possible.

In the context of DoD capability-based acquisition, the government specifies the
capabilities for the system that are needed by the warfighter. The government contracts
specify and refine the capabilities into system requirements, architectures, designs, and
other system artifacts. In [Caffall 03], we demonstrate how the Unified Modeling
Language (UML) can be used to refine a system-of-systems. In this report we extend our
earlier investigation to include the explicit treatment of linear temporal logic for
developing the BMK functional specifications and verifying the specifications using
model checking.

Discussion
Battle management relies on two functions that influence the outcomes of battles:
planning and command and control (C2). For this technical report, we define planning as
that military planning that produces either an Operation Plan (OPLAN) or an Operations
Order (OPORD) to employ military force against an adversary. We define C2 as the
exercise of authority and direction by a properly designated commander over assigned
and attached forces in the accomplishment of the mission.

Planning includes the initial lay-down of joint and coalition forces, rules of engagement,
provisioning, and re-supply Planning “sets the table” for the military and establishes the
initial ruleset that the warfighters will follow at the onset of the battle. Planning is a
coordinated joint staff procedure used by a commander to determine the best method of
accomplishing assigned tasks and to direct the action necessary to accomplish the mission.
[JCS 03] Planning includes both the deliberate planning and crisis-action planning
(CAP). Combatant commanders (COCOMs) conduct deliberate planning to develop a
military response to a future hypothetical contingency while CAP takes place in response
to a crisis in which the United States’ national security interests are threatened and the
President is considering a military response. [JFSC 00]

C2 functions are performed through an arrangement of personnel, equipment,
communications, facilities, and procedures employed by a COCOM in planning,
directing, coordinating, and controlling forces and operations in the accomplishment of
the mission. [JCS 03] Through C2, the senior military leadership modifies and enhances
the initial ruleset that governs the battlespace. (N.B.: Battlespace is defined as the
environment, factors, and conditions that must be understood to successfully apply
combat power, protect the force, or complete the mission. This includes the air, land, sea,

 5

space, and the included enemy and friendly force; facilities; weather; terrain;
electromagnetic spectrum; and the information environment within the operational areas
and areas of interest. [JCS 03])

Recall from previous discussion that the Joint Staff defined Precision Engagement as
follows:

…the ability of joint forces to locate, surveil, discern, and track objectives
or targets; select, organize, and use the correct systems; generate desired
effects, assess results; and reengage with decisive speed and
overwhelming operational tempo as required, throughout the full range of
military operations. [Chairman 00]

The basic construct of the definition is the identification of the functional flow of military
activities that must occur to engage a threat object. This functional flow of military
activities is colloquially known as the kill chain.

Rather than capriciously defining a kill chain for the battle-management function, we
treat the functional flow of events that occur in the engagement of a military threat,
starting with an examination of the original work of Colonel John Boyd (USAF, Ret.) and
followed by the Navy’s functional construct for missile defense, the Army’s functional
flow of events for deep operations, the Air Force’s kill chain, and the Joint Chiefs of
Staff’s functional flow of events for theater ballistic missile defense (TBMD).

Observe-orient-decide-act
Colonel John Boyd was an avid student of military engagements. From his analysis of
the engagement actions of commanders and famous battles, he formed a concept of what
is known today as the Observe-Orient-Decide-Act (OODA) loop. He noted that in many
of the engagements, one military force presented the other with a series of unexpected
and threatening situations with which they had not been able to keep pace. The faster
military force eventually defeated the slower military force. Boyd observed that military
conflicts are time competitive.

In the OODA Loop, Boyd incorporated a temporal aspect in his analysis of military
decision-making before and during battle. Decisions and actions that are delayed are
often rendered ineffective because of the constantly changing circumstances. When a
military adversary is involved, the operation is not only time-sensitive but also time-
competitive. Time or opportunity neglected by one adversary can be exploited by the
other. [Coram 02]

According to Boyd, military conflict can be seen as a series of time-competitive cycles
through and OODA loop. Each military force in a conflict begins by observing
themselves, the physical surroundings, and the adversary. Next, the military force orients
itself; orientation refers to making a mental image or snapshot of the situation.
Orientation is necessary because the fluid, chaotic nature of conflicts makes it impossible
to process information as fast as military commanders can observe it. This necessitates
applying a freeze-frame concept and provides a perspective or orientation.3 Once we
have an orientation, military commanders must make a decision. The decision takes into

3 This is analogous to creating a materialized (i.e., stored) view of data by querying a database.

 6

account all the factors present at the time of the orientation. Finally, the military
commander must implement the decision. This requires action. One tactical adage
states: “Decisions without actions are pointless and actions without decisions are
reckless.” Then the cycle begins anew as military commanders believe that their actions
will have changed the situation. The cycle continues to repeat throughout a tactical
operation. [Boyd 86]

The military force that can consistently go through the OODA loop faster than the other
enemy force can, ceteris paribus, gains a tactical advantage. By the time the slower
adversary reacts, the faster force is doing something different and the slower adversary’s
action may become ineffective. With each cycle, the action of the slower military force
becomes increasingly ineffective by an increasingly larger margin. The aggregate
resolution of these episodes will eventually determine the outcome of the conflict. For
example, as long as the actions of the faster military force continue to prove successful,
the slower military force will remain in a reactive posture while the commander of the
faster military force maintains the freedom to act. No matter how desperately the slower
military force strives to accomplish its military objectives, every action becomes less
useful than the preceding one. As a result, the slower military force falls farther and
farther behind. [Boyd 86] [Coram 02]

Detect, control, engage
At a Millennial Challenges Colloquium presentation in April 2000, Vice Admiral Rodney
Rempt (then Rear Admiral and Deputy Assistant Secretary of the Navy for Theater
Combat Systems) discussed Naval theater air and missile defense for the twenty-first
century. He observed that some level of defense is the “price of admission” for carrying
the battle to the shores of potential adversaries. He discussed the threat to the Fleet of
cruise missiles, ballistic missiles, fighter-bombers, and unmanned aerial vehicles
(UAVs); these threats are steadily increasing in lethality, accuracy, and range. Hence,
Vice Admiral Rempt concluded that the Naval theater air and missile defense must
formulate and apply a concept of Detect, Control, and Engage. [Rempt 01]

For the detect aspect of Naval theater air and missile defense, the concepts of multi-
spectrum sensor netting and data fusion must be realized from a variety of active sensor
arrays, passive staring infrared sensors, and bistatic sensors. The timely and accurate
detection of current and future threats is absolutely essential in triggering military action
to negate the threat.

For the control aspect, the Navy must realize a network of planning tools, automated
decision aids, and the single integrated battle space. The Navy must develop solutions to
potential threats before the threats are realized. Planning and identifying potential
engagement zones, rules of engagement, and consequence management will become
critical to the success of Naval theater air and missile defense.

For the engage aspect, the Navy must be able to deliver the appropriate force to negate
current and future threats to the Fleet and its defended assets. The received information
must be processed in a timely fashion so that Naval officers can make timely decisions
for engaging potential threats. Indecision due to inconclusive or untimely information
will have catastrophic consequences to Fleet assets.

 7

Decide, detect, deliver, and assess
The Army defines targeting as the process of selecting targets and matching the
appropriate response to them on the basis of operational requirements and capabilities.
COCOMs use the functional construct of decide, detect, deliver, and assess to transform
a COCOM’s targeting intent into an engagement.

The emphasis of targeting is on identifying resources the enemy can least afford to lose
or that provide him the opposing force with the greatest advantage, then further
identifying the subset of those targets which must be acquired and attacked to achieve
success. Denying these resources to the enemy make the enemy’s military assets
vulnerable to COCOMs’ battle plans. These resources constitute critical enemy
vulnerabilities. Successful targeting enables the COCOM to synchronize intelligence,
maneuver, fire-support systems, and in addition to special operations forces, by attacking
the right target with the best system and munitions at the right time.

The decide function, as the first step in the targeting process, provides the overall focus
and sets priorities for collecting intelligence and planning attacks. Targeting priorities
must be addressed for each phase or critical event of an operation.

Detect is the next critical function in the targeting process. The intelligence cell is the
main figure in directing the effort to detect high-payoff targets identified in the decide
function. This process determines accurate, identifiable, and timely requirements for
collection systems.

The deliver function of the targeting process executes the target attack guidance and
supports the COCOM's battle plan once the high-payoff targets have been located and
identified. Some targets will not appear as anticipated. Target attack takes place only
when the forecasted enemy activity occurs in the projected time or place. The detection
and tracking of activities associated with the target becomes the trigger for target attack.

Combat assessment is the determination of the effectiveness of force employment during
military operations. On the basis of battle damage assessment (BDA) reports, the
COCOM continuously estimates the enemy's ability to make and sustain war and centers
of gravity. During the review of the effects of the campaign, re-strike recommendations
are proposed or executed. BDA is the timely and accurate estimate of damage resulting
from the application of military force, either lethal or non-lethal, against a target. BDA in
the targeting process pertains to the results of attacks on targets designated by the
commander. [DA 96]

Find, fix, track, target, engage, assess

According to General John Jumper (Chief of Staff of the United States Air Force),
today’s Air Force is a “community of stovepipes.” General Jumper wants to achieve
horizontal integration that he defines as the “…ability to fuse data from every Air Force
platform into a single repository of information, such as crews, planes, targets, and
loads.” His vision is to achieve horizontal integration is the accomplishment of the entire
“kill chain” from a single source of information. General Jumper defines the kill chain as
find, fix, track, target, engage, and assess. [Erwin 02]

 8

As avowed by Lieutenant General Leslie Kenne (Air Force Deputy Chief of Staff for
Warfighting Integration), the Air Force must “close the seams” in the kill chain by
“integration of manned, unmanned, and space systems.” Historically, technology limited
the flow of information. Battlefield information delivery was limited to the speed of the
horses and the ability of the commander to assess the battlefield information from afar.
Execution was centralized as only the commander had the situational awareness of the
entire battlefield. Consequently, reinforcement troops had no time to gain situational
awareness. Thus, troops had to rely on their commander to direct their movements and
placements, and hoped that the enemy had not conducted movements that countered the
commander’s situational awareness. [Kenne 03]

Today, technology provides the potential to maintain situational awareness for the entire
military force. The military has developed an interconnected network of information
with the objective of providing timely and accurate information to all points of the
battlespace. The stovepipes discussed by General Jumper prevent the achievement of this
objective and prevent effective battle-management in the battlespace.

Detect, identify, locate, track, destroy
In recent years, the threat of missile attack to American forces and allies in foreign lands
has dramatically increased. Numerous nations own missiles that has forced the United
States to address this potential threat. The proliferation of theater missiles, advances in
missile technology, and the pursuit of weapons of mass destruction have provided
potential adversaries with a lethal-attack capability against United States’ interests.

As outlined by the Joint Chiefs of Staff, theater missile defense applies to the
“…identification, integration, and employment of forces supported by other theater and
national capabilities to detect, identify, locate, track, minimize the effects of, and/or
destroy enemy [theater missiles].” Through this process, military commanders should be
capable of countering threats from theater missiles and have the capability for rapid
global deployment and theater mobility. [JCS 96]

For this technical report, we will employ a kill chain that is defined by the following five
functions: Detect, Track, Assign Weapon, Engage, and Assess Kill. These five
functions address all the functions outlined in the definition of precision engagement to
which the Joint Chiefs of Staff subscribe, in addition to all of the functions identified in
the Boyd, Navy, Army, Air Force, and Joint Chiefs of Staff functional models.

Of the five kill chains described in the preceding paragraphs, only the Army and the Air
Force identified an assess function that is required to determine whether the threat object
is indeed negated. The assess function is essential to complete the engagement as defined
by the Precision Engagement. The fix function of the Air Force kill chain is captured
within the track function of our defined kill chain.

As can be observed in Table 1, the proposed kill chain proposed is complete with respect
to addressing the major functions required to negate a threat object.

 9

Statement of the problem
To appropriately frame the problem, we would once again recall the Joint Chiefs of
Staff’s definition for precision engagement:

…the ability of joint forces to locate, surveil, discern, and track objectives
or targets; select, organize, and use the correct systems; generate desired
effects, assess results; and reengage with decisive speed and
overwhelming operational tempo as required, throughout the full range of
military operations. [Chairman 00]

In March of 2003, Joint Forces Command identified eight key shortfalls in the desired
achievement of effective Joint Task Force Command and Control. Those shortfalls
include incomplete shared situational awareness, inadequate information superiority, and
insufficient joint and coalition interoperability. [JFC 03] (N.B.: For this report, we
define interoperability as the ability of systems, units, or forces to provide services to and
accept services from other systems, units, or forces and to use the services so exchanged
to enable them to operate effectively together.)

In a December 1997 report to Congress on the National Missile Defense (NMD) system,
the General Accounting Office (GAO) identified technical issues in discrimination and
data fusion. Additionally, the GAO reported the average time to develop major weapon
systems is 9.9 years based on an analysis of fifty-nine acquisition programs. [GAO 97]
This observation bolstered the claims of defense acquisition critics that development
cycles are too long, too costly, and provide too little required functionality.

In his book “Software Fundamentals: Collected Papers by David L. Parnas,” Dr. Parnas
outlines six major characteristics of the battle-management software in the Strategic
Defense Initiative (SDI) program (known today as the Ballistic Missile Defense System).

Boyd Navy Army Air Force JCS Technical Report

Observe Detect Decide

Detect

Find

Detect Detect

Orient Fix

Track

Identify

Locate

Track

Track

Decide Control Target Assign Weapon

Act Engage Deliver Engage Destroy Engage

 Assess Assess Assess Kill

Table 1. Summary of Kill Chains

 10

[Parnas 01] The below issues are as relevant today as during the time when Dr. Parnas
published his observations:

The battle-management software must identify, track, and direct weapons towards targets
whose characteristics may not be known with certainty until the moment of battle. The
battle-management software must discriminate the threat objects from decoys and debris.

1. The battle-management computing will be accomplished through a network of
computers that are connected to sensors and weapons as well as other battle-management
computers. The behavior of the battle-management software cannot be predicted with
confidence given the actual configuration of weapons, sensors, and battle managers at the
moment of battle.

2. Developers cannot test the battle-management software under realistic
conditions prior to actual use of the software.

3. The duration of the defense engagement will be short: it will not allow for
either human intervention or debugging the software to overcome software faults at
runtime.

4. The battle-management software will have absolute real-time deadlines for the
computation that will consist of periodic processes to include detecting and identifying
potential threat missiles, assigning a weapon to engage the threat missile, and providing
an assessment of the interceptor-threat missile engagement. Because of the
unpredictability of the computational requirements of each process, developers cannot
predict the required resources for computation.

5. The missile defense system will include a large variety of sensors, weapons, and
battle-management components for which all will be large, complex software systems.
The suite of weapons and sensors will increase in number as the development progresses.
The characteristics of these future weapons and sensors are not well defined and will
likely remain fluid for many years. Additionally, all weapons and sensors will be subject
to change independently of each other. As such, the battle-management software must
integrate numerous dynamic software systems to the extent that has never before been
achieved.

Given the above observations, we believe that the battle-management software must
overcome the problems that are summarized in Table 2.

 11

Issue Comment

Incomplete Shared
Situational
Awareness

Because of the numerous stovepipe developments, situational
awareness is inconsistent among the networked platforms.

Inadequate
Information
Superiority

Because of the numerous stovepipe developments, information
tends to remain within a single system platform.

Insufficient
Joint/Coalition
Interoperability

Because of our attempt to network our systems through
interconnection rather than integration, joint and coalition
remains limited in the operational battlespace.

Inadequate
Discrimination

Because of differing algorithms in our systems as well as
limitations in our interconnectivity solutions for networking,
our systems cannot quickly and accurately discriminate decoys
and debris from actual threat objects.

Unpredictable System
Behavior

Because of the stovepipe developments of our systems and the
interconnectivity solutions for our networking, the behavior of
our systems are largely unknown.

Inadequate System
Testing

Because of the shortened acquisition timelines as well as the
increased complexity of our systems, system testing is
primarily that of a test of selected functional threads.

Critical Software
Faults at Runtime

Because of the short time duration of military engagements and
the safety-critical nature of our systems, we must field our
systems with undiscovered major critical software faults.

Real-Time
Computational
Deadlines

Because of the short duration of military engagements and the
intensity of the battlespace, we must know that the most critical
software tasks will be executed without fail.

Complex Integration

Because of the dynamic nature of potential threats and the
requirement to enhance our systems as the threat increases in
delivery and lethality, we must have the ability to quickly
modify our systems and function as a single system-of-systems.

Prolonged
Development Cycle

We must develop acquisition methodologies to reduce the
acquisition cycles from nearly ten years to under a year to
achieve essential military capabilities.

Table 2. Summary of Issues

 12

Significance of the problem
Given that the interconnected battle-management solutions in the system-of-systems
environment are separately designed and developed on various operating platforms in
different languages, predicting battle-management behavior of the system-of-systems is
not possible. As a rule, battle management is still executed at the system level rather than
the desired system-of-systems level. (N.B.: In this technical report, we define a system-
of-systems as an amalgamation of legacy systems and developing systems that provide an
enhanced military capability greater than that of any of the individual systems within the
system-of-systems.)

Another factor that contributes to the challenge involved in predicting battle-management
behavior is the acquisition practices currently employed in DoD. The increased pressure
to rapidly move product into the operational battlespace tends to channel program
managers into focusing on achieving functionality as quickly as possible. As such, the
development community responds with a hurried and oftentimes inadequate design phase
and follows with an intense period of coding. In the rush to rapidly develop a product,
one can fall into the trap of exclusively seeking some level of achieved capability while
ignoring the behavior of the software.

Because we cannot readily predict the system behavior of legacy battle-management
systems, we tend to fulfill battle-management requirements as a new development.
While the basic five functions do not change from system to system and from year to year,
we choose to acquire a new battle-management system as a new development. What
changes are the sensors used to collect information for the warfighters, the weapons used
to engage threat targets, and the rules of engagement (ROEs) established in both the
planning and the C2 functions.

Specific features within the battle-management software will change over time (e.g.,
discrimination algorithms, correlation algorithms, feature-aided tracking); however, we
can isolate those features in components that can be interchanged at a time when
developers are prepared to introduce new technology into the battle-management
software.

Focus and scope
We recommend that the DoD consider adopting an architectural framework that treats the
BMK as the meta component that binds the system-of-systems together. The BMK will
transcend time in the sense that we envision it will be relatively stable and unchanged as
compared to the components interfaced to the BMK.

We advocate the development of battle-management software as a real-time set of system
functionality that addresses warfighter usage. To achieve the level of desired predictable
system behavior, we maintain that it is essential to develop a formal representation that
captures the desired system behavior of the battle manager and to test the formal
representation against the expected battle-management properties, such as schedulability
and concurrency.

From the table of identified battle-management issues (vid.Table 2), we will address
those identified issues in the BMK.

 13

Inadequate information superiority

We propose a software architecture that allows for different sensors to provide
information to the BMK. In most weapon systems, the sensor is one of three major
components: sensor component, weapon component, and a C2 component. (N.B.: In this
technical report, we define a component as a software unit of composition with
contractually specified interfaces and explicit context dependencies.)

Typically, the sensor information is processed locally within the weapon system. If
information is shared with other weapons systems, the control component transmits
processed information onto a network within the confines of the network protocol (e.g.,
Link 11, Link 16, Tactical Information Broadcast Service (TIBS), Tactical Related
Applications (TRAP), Variable Message Format (VMF)). Information loss or
misinterpretation of the information can result from the translation of one protocol to
another, or between systems employing different implementations of the same protocol.

We propose to treat sensor as a separable component and connect it to the BMK as
depicted in Figure 1. We will pull selected information from the sensor processor and
transmit that information to the BMK. The BMK will process the information and
provide correlated tracks to the connected C2 centers.

Inadequate discrimination

We will not attempt to explicitly address the discrimination problem in this technical
report; however, we recognize discrimination as a feature that could change frequently as
developers introduce new technology and new algorithms to battle-management systems.
As such, we will use a software component to isolate discrimination as depicted in Figure
1 so that future upgrades such as advanced discrimination algorithms can be inserted in
the discrimination component of the framework.

Incomplete shared situational awareness.

We propose a software framework that allows for a common scheme for correlation of
track information from different sources and providing that correlated information to
command and control centers. We propose that correlation software be developed and
maintained as a software component that interfaces with the BMK.

Insufficient joint/coalition interoperability

The integration of legacy systems into a system-of-systems is a difficult task for
acquisition organizations for many reasons to include coupling and cohesion that result in
limited interoperability among systems. Our system-of-systems are interconnected
systems that display a high degree of coupling and a low degree of cohesion. [Caffall 03]
Legacy systems within the system-of-systems are based on different technologies and
different implementations. As such, with the high degree of coupling, modifications to
the software in the legacy systems could have a negative ripple effect in the behavior of
the system-of-systems. Critics of system-of-systems acquisitions perceive a limited
development process that does not consider the integration of timing predictability and
fault-tolerant characteristics. [Meyers 01]

 14

It is neither cost- nor time-effective to rewrite all the software in the BMD sensors,
weapons, and C2 components. As previously noted, we developed each system
independently of all the other systems. As such, each system’s software is different with
respect to architecture, design, missions and functions, language, operating systems, and
persistent data storage schemes.

We believe that it is possible to develop an integrated BMK that significantly reduces the
messaging among the systems in existing system-of-systems by using state changes in
shared memory. This in turn, ceteris paribus, could increase the degree of
interoperability between the battle-management function and the sensors, weapons, and
C2 components. [Stewart 01] With the development of the BMK as real-time software,
we can match the performance of the weapon systems and avoid the negative impact of
forced synchronization of the battle manager with the sensors, weapons, and C2
components in the system-of-systems.

Rather than depending on a universal interface protocol such as military standard for
Link 16 [DOD 02], we propose type interfaces for the BMK. We believe that we can
achieve a higher degree of interoperability than what we currently experience by
developing a number of smaller interfaces into the BMK rather than a single large
interface as in the Link 16 military standard.

We recommend capturing desired system behavior in the interface definition rather than
depending solely on messaging requirements as in the Link 16 military standard.
Developers should maintain the BMK interfaces as separable, configurable items from
the BMK. We propose constructing interfaces by type for BMD; that is, software
engineers should consider constructing interfaces for ballistic missile defense elements
such as an infrared sensor type, a radar type, a kinetic energy weapon, and a directed
energy weapon. They must require that each instantiation of an interface type will include
all the attributes and operations of its parent type similar to the concept of class
inheritance in which a subclass inherits attributes and operations from its parent. [Booch
94] We propose that the definitions interfaces follow the conventions set forth in
[Bachman 02]:

Interface Identity. Identify the name, component type, and version. Each interface will
have a unique identify.

Interface Usage Definition. Specify the overall system behavior for which the interface
will provide or receive services or data. Additionally, we will identify system-timing
requirements for the interface.

Provided Resources. Identify the specific resources that the interface provides to the
BMK. This will include the information that other software programs will require to
invoke the interface as well as the result of invoking the interface. Additionally, we will
provide interface usage restrictions that define under what conditions the interface may
be invoked.

Defined Data Type. Identify the data types used in the interface to include the
programming language, declaration of variables and constants, operations that may be
performed on data types, and instructions on how to convert the values of the interface
data type into other data types.

 15

Error-Handling Capability. Provide the error conditions that might occur through the
interface (e.g..; message translations from one protocol to another, out of bound values,
illegal values). Additionally, provide the error-handling behavior of the interface.

Interface Characteristics. Identify the characteristics of the interface attributes to include
data precision, data formats, reliability, timing, and constraints.

Interface Requirements. Identify the resources required from the software component
that invokes the interfaces to include syntax, semantics, and usage restrictions.

Unpredictable system behavior

As previously discussed, software engineers cannot easily determine the system behavior
of current battle-management systems. In the domain of the BMD, the BMK behavior
must be predictable and must respond immediately to hostile actions of potential
adversaries. The warfighters must have confidence that the battle-management software
will perform its critical tasks as designed, and will not exhibit inappropriate system
behavior such as reporting false ballistic-missile threats and issuing engagement
commands for non-existent ballistic-missile threats.

In the operational battlespace, the BMK will control the behavior of various weapon
systems over a global control network. Based on processed information within the BMK,
it will report ballistic-missile threats to all layers of management up to the President of
the United States. The BMK will assign a weapon to engage each detected ballistic-
missile threat and order the engagement of each ballistic-missile threat.

It is neither feasible nor cost-effective to rewrite all the software in the sensors, weapons,
and C2 components. As previously discussed, we developed each system independently
of all the other systems. As such, each system’s software is different with respect to
architecture, design, missions and functions, language, operating systems, and persistent
data storage schemes.

We believe that what is possible is to develop the BMK with predictable system behavior.
Given that the BMK determines the existence of a ballistic-missile threat and orders the
engagement of the ballistic-missile threat, we believe that predictable system behavior of
the BMK will significantly improve the overall predictability of the BMD system-of-
systems.

To achieve the level of desired predictable BMK behavior, software engineers could
develop a formal representation that captures the desired system behavior of the BMK
and verify the formal representation against the expected BMK properties.

We recommend that software engineers develop the formal representation of the BMK by
using metric temporal logic (an extension of linear temporal logic [Drusinsky 02]) to
describe the BMK functional specifications. To avoid the state-explosion problem,
software engineers must carefully model the fundamental behavior of the BMK rather
than a comprehensive specification of the BMK. [Gluch 99] [Lewis 01] Recall that the
BMK will be real-time software. Therefore, the formal model of the BMK should be
state-based as we desire to effect change in the sensors and weapons through state
changes rather than messaging.

 16

For example, consider the assigning of a weapon to an identified threat-ballistic missile.
In typical C2 systems, the battle-management function sends a message to each weapon
that a threat exists. After some time, the battle-management function sends a message to
a specific weapon to engage the threat-ballistic missile and sends messages to the other
weapons not to engage the threat-ballistic missile. In the BMK, we will use logic to
determine the threat exists and change the state status of the ballistic-missile threat in
shared data memory from INACTIVE to ACTIVE. After using logic to determine which
weapon has the best shot opportunity, the BMK will assign that weapon to engage the
active ballistic-missile threat by pairing the weapon to the ballistic-missile threat and
changing its engagement status from INACTIVE to ENGAGE in the shared data memory.

Software engineers should consider the use of an automated model-checking tool to
verify that the formal BMK model reaches each desired state as designed. The automated
tool will determine whether the logic is appropriate to reach each state and whether the
logic prevents reachable states inappropriately. With respect to the real-time aspects of
the BMK software, we will use the model checker to: (1) determine whether a deadlock
condition occurs, (2) ensure that the BMK executes the critical tasks under all battlespace
conditions to include overload conditions, and (3) the system reaches each desired state
within its time constraints. [Guaspari 00] The result of the state-based model verification
will be the substantiation or repudiation of the desired BMK behavior. [Lewis 01]

Software engineers could address the so-called “state-explosion problem” by employing
symbolic model checking. That is, they should abstractly represent a set of states by
using a compact description rather than an explicit listing of all states. [Gallardo 03] The
abstract model should be effective in uncovering BMK behavior errors with only a
portion of the state space explored. [Chen 03]

Inadequate system testing

By incorporating assertions developed from the functional model and verified by the
model-checking effort into the BMK, software engineers can develop embedded
automatic test generation capabilities. Assertions have multiple benefits to include
automated testing without pre-generation of expected results, debugging the BMK
software, and reduced diagnostic time for identifying the subtle bugs within the BMK
software. [Binder 01]

Critical software faults at runtime

Software engineers could incorporate assertions and error-handling schemes developed
from the functional model and verified by the model-checking effort into the BMK. The
error-handling schemes for breaks in logic will benefit the warfighters by either
developing an automated logic-break recovery or notifying the warfighters of required
manual actions.

Real-time computational deadlines

System-of-systems functional and performance expectations of the users continue to
increase as the acquisition community continues to develop and field the products of C4
systems and weapon systems integration. The class of systems in which C2 and Battle-
management are contained are called Command, Control, Communications, and
Computers (C4) systems. Typically, C4 systems are non-real-time systems.

 17

Traditionally, weapon systems are real-time systems. [Meyers 01] If we are to match
the performance of the weapon systems and avoid the negative impact of forcing
synchronization of the battle manager with the weapon system for messaging, then we
must develop the battle manager as real-time software.

We advocate developing the BMK as real-time software that will be run on top of a hard-
tasking, real-time operating system to ensure the schedulability of battle-management
tasks and the concurrent nature of battle-management systems. A real-time defense
system must exhibit the following behaviors [Douglas 99] [Sha 93]:

1. Predictable and immediate response to precarious battlespace conditions.

2. High degree of task schedulability. (N.B.: For this report, schedulability is
defined as the degree of resource utilization for which the timing requirements of tasks
can be assured.)

3. Stability under transient overload. If the real-time defense system is overloaded
by multiple battlespace conditions and the system cannot meet all of its scheduled
deadlines, then the real-time system must guarantee that it will meet the deadlines of the
most critical tasks.

Frequently, non-real-time systems implement inputs and outputs as messages that works
well in a non-real-time environment. Message passing in real-time systems does not
work well for the following reasons [Stewart 01]:

1. Message passing requires synchronization between the message sender and the
message receiver. This is a significant source of unpredictability in real-time scheduling
of software tasks given that functional blocks of code execute synchronously to pass
messages. Consequently, the analysis of the real-time system timing may prove to be
impossible.

2. A significant opportunity for deadlock exists in real-time systems that attempt to
incorporate either bi-directional communication between software processes or a
messaging feedback loop. A better solution would be to use a state-based system.
Software processes can bind to a single element in a state variable table. This would help
to eliminate synchronization dependencies among software processes.

3. Messaging software schemes require significantly more overhead (e.g., error
correction coding, interleaving methods, messaging protocol communications) than
systems that use shared-memory techniques. Although messaging may be necessary for
communications across networks, messaging is not efficient if random-access to the data
is possible as is the situation for communications among software processes within a
single processor.

Complex integration

We will identify the BMK functions that will experience frequent change during the
operational phase of the acquisition lifecycle. We propose that these functions be
transformed into software components (as defined in [Szyperski 02]) in order to reduce
the complexity of software integration.

 18

Prolonged development cycle

We believe that the BMK can serve as the basis for future battle-management systems.
We believe that a developer could use the BMK as the core element to connect sensors,
weapons, and user displays to provide the essential basic battle-management capabilities
in a timeframe measured in months rather than years.

BMK development strategy
We believe that software engineers should consider developing the BMK as a real-time
set of system functionality that addresses warfighter usage with respect to the kill chain.
In this approach, they would develop a framework that contains the proposed BMK as
well as contains battle-management software components that will experience the most
change during the acquisition life cycle of a battle-management system.

As the initial step to the BMK development, we recommend performing a domain
analysis of the battle-management functions. During this type of analysis, software
engineers could derive warfighter usage requirements from battle-management use cases.
They could refine the use cases as we develop sequence diagrams to depict the messaging
requirements among the derived classes from the use cases. Software engineers could
develop a state diagram for the BMK to identify the desired battle-management behavior.
To conclude the domain analysis, they should identify and verify assumptions on battle-
management operations to support the development of BMK specifications.

From the iterative review and refinement of these artifacts, software engineers could
develop detailed specifications that focus on defining BMK behavior and achieving
battle-management goals. They should consider the use of logic to describe the BMK
specifications.

We recommend the verification of the functional specifications with the use of a model-
checking tool to determine the degree of system behavior predictability with respect to
state transitions and tolerance to battlespace environmental variables. The verification
should focus on ensuring that the BMK can meet the specifications and exhibits the
desired behavior. Software engineers might design test oracles that contain the full range
of battle-management variables that are both within and outside the expected range of
operational values for the ballistic missile defense.

Plan of execution for the BMK design and development
The BMK will act as “glueware” between software applications unique to each battle-
management domain, and the sensors, C2 systems, and weapon systems in that battle-
management domain. That is, the BMK will execute the five kill-chain functions by
calling upon various components for computation.

We recommend the identification of the required interfaces into the BMK include sensors,
weapons platforms, and C2 systems. Rather than point-to-point interfaces, we propose
the development of type interfaces that define the behavior of each interface and the
required specifications to realize each interface. We propose that the interfaces be
developed and maintained as separate configurable items to preserve the identity of the
interface and to minimize the opportunity for multiple versions of the interface.
Additionally, it is important the interface identifies its operations and does not specify

 19

implementations of its operations. [Crnkovic 02] This is frequently the case as
interfaces are developed within the application software.

For ease of integration and maintainability, we propose the development of software
components for the features that typically experience the majority of changes.
Developers can realize a component-based framework with less effort and without
unwieldly upgrade cycles as compared to fully integrated, monolithic software solutions.
Additionally, a component-based framework allows for tailoring of the framework to
address specific user needs. [Szyperski 02] For this report, we identify software
components that include enforcing rules of engagement, conducting discrimination and
correlation, performing feature-aided tracking, and estimating launch, impact, and
intercept points.

Domain analysis

The first task is to construct a domain analysis of the BMD space to uncover the desired
behavior of the BMK. Software engineers should base the domain analysis on the five
functions of the kill chain identified for use in this technical report: Detect, Track,
Assign Weapon, Engage, and Kill Assessment. The domain analysis should include use
cases, sequence diagrams, and state diagrams. The goal should be to characterize the
desired BMK behavior in the domain analysis. As a point of departure, software
engineers can start with the conceptual framework described in [Caffall 03]. In the
referenced work, we developed design artifacts for the ballistic missile defense system-
of-systems. This work is directly applicable to developing the BMK given that the
artifacts are modifiable to focus on the problem statement in this technical report.

Specifications

The second task will be to construct a set of specifications using temporal logic that will
serve as a model of the BMK. The goal is to achieve a greater degree of clarity and focus
in the specification of the desired BMK behavior as compared to traditional list of system
requirements.

We recommend that software engineers develop a sufficient amount of information to
automatically produce test cases for the implementation. Otherwise, they run the risk of
developing so-called “cartoon models” that are only useful for drafting and refining
potential solutions. Software engineers need to develop test-ready models of the BMK.
In order to be testable, a model should contain all the features of the BMK, preserve
sufficient detail that is critical for discovering faults, and faithfully represents the
essential states, actions, and transitions in the state diagram. [Binder 01]

If the BMK model is to be useful for this effort and in future acquisition efforts, it must
exhibit the following properties outlined in [Selic 03]:

Appropriate level of abstraction. A model is a representation of some entity. In the
development of the representation, modelers abstract away details that is not necessary
for others to gain an understanding of the fundamental nature of the represented entity.
As modelers abstract away details, they must ensure that the core capabilities of the
represented entity are captured in the model.

 20

For the BMK model, we want to capture the essential functionality of the battle-
management function and we want to capture the functionality defined in the interfaces to
the BMK. It is not important to model the actual processing involved with each of the
five functional areas; however, we must ensure that we model the generation of triggers
for state transitions.

High degree of understandability. A model must describe the abstracted system behavior
in a clear and logical manner to both the software engineer and the software maintainer.
If either party cannot understand the model, then the model hold limited utility in the
software lifecycle acquisition.

For the BMK model, we want to depict the battle-manager behavior in a logical fashion
so that the designer can faithfully realize the BMK specifications in accordance to the
artifacts developed in the domain analysis. Additionally, an understandable model
supports software integration and software maintenance efforts.

High measure of accuracy. Although we desire to hide the unimportant details of the
BMK, it is important to accurately specify the details and the associated parameters to
ensure that the model will provide utility to the software engineer. Additionally, the
model must yield outputs that are within defined error bounds to ensure the model
faithfully represents the desired system.

For the BMK model, software engineers should capture the desired parameters in the
logic statements. We must accurately capture the BMK response requirements such as
the maximum allotted time from track identification to weapon assignment on that track.
We must accurately capture the BMK required calculation requirements such as the
location ellipse of a tracked object. We must accurately capture BMK limits such as the
maximum number of concurrently tracked objects.

High level of predictiveness. The model must correctly and consistently mirror the
behavior of the desired system. For example, given that the system is in a known state
and given the known inputs, the model should transition to the appropriate state without
fail.

For the BMK model, we must ensure that the model faithfully represents the behavior of
battle-management operations. We must ensure that the BMK states are reached
appropriately and the transition triggers are reflective of the projected BMD battlespace.
For example, the model must transition from the state in which tracking occurs to the
state in which a weapon assignment occurs each and every time the model is presented
with the appropriate transition events. Just as important, the model must not transition
for events other than what was designed for the BMK.

Software engineers should consider using temporal logic to define assertions for the
BMK specifications. We believe that the use of assertions through temporal logic will
yield specifications that are verifiably consistent and accurate. We believe that the use of
assertions through temporal logic will result in verifiably predictable BMK behavior.

It is our experience that the vast majority of engineers involved with acquisition of
software-intensive systems are not familiar with software formalisms. Additionally, we
assert that few of the many system engineers in acquisition could follow temporal logic
without some level of instruction. As such, software engineers may choose to minimize

 21

the use of typical temporal logic symbols and attempt to develop the specifications in as
close to natural language as possible while still maintaining the degree of rigor that
temporal logic lends to specification development.

This approach is necessary to gain buy-in from system engineers and engineering
managers. Acquisition efforts require significant commitments of human and financial
capital. Introducing new acquisition methods to replace that which is familiar and
comfortable is generally viewed as risky and foolish. Proposed changes must be readily
evident to system engineers and engineering managers, or the proposed changes will not
be adopted. As an example of this approach, we offer the following example of assigning
a weapon to a tracked object:

User Goal: Assign a Weapon to a Tracked Object

Narrative: The BMK must assign a weapon to engage a threat object before it impacts or
detonates over pre-designated defended area. The BMK must determine whether the
tracked object is a ballistic-missile threat. The BMK must determine whether the
predicted impact point is within the defended area as defined by military planners. The
BMK must determine which weapons are available. The BMK must determine which
weapon(s) can engage the tracked object. The BMK must assign the appropriate weapon
to prosecute the engagement of the tracked object.

The logic to assign a weapon to a tracked object is as follows:

Weapon assigned to track object is true iff:
 (Tracked object is a ballistic-missile threat) &
 (Predicted impact point is within defended area) &
 (Weapon is available) &
 (Weapon interceptor capability is adequate)

We would outline the specification as follows:

Variables:

Boolean: Weapon_Assigned
// Weapon assigned to tracked object is true

Boolean: Ballistic_Threat
// Tracked object is ballistic-missile threat

Boolean: IPP_Within_Defended_Area
// This statement is true if the predicted impact point lies inside the
physical dimensions of the defended area.

Boolean: Weapon_Available
// True if one or weapons are capable of immediately launching an interceptor.

Boolean: Intercept_Point_Min_Within_Intercept_Range
// True if the minimum intercept point lies within the interceptor range volume.

 22

Boolean: Unknown Track
// True if track object has yet to be identified as a ballistic-missile threat

Set: Tracked_Object
// Contains detected characteristics of a ballistic-missile threat

Multiset: Threat_Profile
// Contains sets of characteristics for known ballistic-missile threats

String: Tracked_Object_Status
// Identifies status of Tracked_Object. Will be Active, Killed, Hit, or Dropped

Integer: Unknown_Track_Life
// Time duration from detection to present time – expressed in seconds.

Boolean: IPP_Within_Defended_Area
// True if IPP of ballistic-missile threat lies within defended area

Real: IPP_Latitude
// Latitude of IPP

Real: IPP_Longitude
// Longitude of IPP

Real: Defended_Area_Max_Latitude
// Maximum latitude value of defended area

Real: Defended_Area_Min_Latitude
// Minimum latitude value of defended area

Real: Defended_Area_Max_Longitude
// Maximum longitude value of defended area

Real: Defended_Area_Min_Longitude
// Minimum longitude value of defended area

Boolean: Weapon_Status_Operational
// True if weapon is operationally available to fight

Boolean: Weapon_Launcher_Armed
// True if weapon launcher is armed and ready to fire

Set: Min_Intercept_Point
// Minimum intercept point at which an intercept at points closer to defended area would
result in negative consequences to the defended area. Expressed in longitude and latitude.
Typed as a set.

 23

Multiset: Interceptor_Range_Volume
// All points within the range of the interceptor. Expressed in longitude and latitude.

Assertions:

 Always Weapon_Assigned <=> ((Ballistic_Threat) &
 (IPP_Within_Defended_Area) & (Weapon_Available) &

(Intercept_Point_Min_Within_Intercept_Range))

 Always Ballistic_Threat <=> (Unknown_Track) Until

(Tracked_Object ∩ Threat_Profile) &
(Tracked_Object_Status = Active) &
(Unknown_Track_Life) < 60

Always IPP_Within_Defended_Area <=> (IPP_Lattitude <
Defended_Area_Max_Latitude) & (IPP_Lattitude > Defended_Area_Min_Latitude)
& (IPP_Longitude <
Defended_Area_Max_Longitude) & (IPP_Longitude >
Defended_Area_Min_Longitude)

 Always Weapon_Available <=> (Weapon_Health_Operational) &
 (Weapon_Launcher_Armed)

Always Intercept_Point_Min_Within_Intercept_Range <=>
(Min_Intercept_Point ∩ Interceptor_Range_Volume)

Model checking

Software engineers should verify the functional specifications by employing the
techniques of model checking. For this report, we will define model checking as the
systematic approach for testing functional assertions and substantiating the desired
system behavior in the model. Model checking is not a proof of correctness; however,
model checking involves creating functional models of a system and analyzing the model
against the formal representations of the desired behavior. [Lewis 01]

For the BMK, software engineers should verify the functional specifications using an
automated model-checking tool that can accept the developed specifications and exercise
the assertions over a number of time cycles. They should identify any inconsistencies
and breaks in logic through the use of the model-checking tool. From the results of the
model checking, software engineers can correct our specifications and the artifacts from
the domain analysis as required.

Software engineers must be cognizant of the state-explosion problem in model checking.
For this report, we will define state explosion as the size of the state space exceeds the
memory capacity of the automated tool to check every trace in the model. [Gallardo 03]
Through abstraction of the BMK functions in our specifications, software engineers can
employ the concept of symbolic model checking in which Boolean functions are
employed to represent transition relations as well as sets of states. Specifically, they

 24

should adopt a compact representation of the state space, such as that provided by binary
decision diagrams (BDDs) to simplify the BMK states by removing sub-trees and
redundant edges on the BMK’s Boolean decision tree. [Clarke 01] In other words, they
can modify the complex logic decisions at the bottom of the tree to simple Boolean
statements so that we can capture the essence of the system behavior in the upper
portions of the decision tree. By reducing the high number of lower-level logic
statements that develop very specific solutions and have limited impact on the overall
system behavior, software engineers should be able to manage the state-explosion
problem.

An example of the state-explosion problem in the BMK, consider the following assertion:

Always Intercept_Point_Min_Within_Intercept_Range <=>
(Min_Intercept_Point ∩ Interceptor_Range_Volume)

Note that the number of points in Interceptor_Range_Volume could be large and that we
are seeking to ensure that one specific point (Min_Intercept_Point) is within the set of
points that define Interceptor_Range_Volume. Rather than use model checking to ensure
that this condition is true, we could abstract the assertion to either a True or False for
Intercept_Point_Min_Within_Intercept_Range. This will reduce the number of traces
through the model to verify this assertion.

Framework design

Software engineers should develop a framework in which the BMK connects to software
components used for calculations in battle-management as well as the interfaces to
external components of systems such as sensors, C2, and weapons. The objective of this
framework is to show a design of a battle manager as an integration of various
components rather than a single software application. In this approach, we consider
weapon systems to be comprised of components rather than a single entity. [Caffall 03]

By treating the each software application and each software interface as components, we
believe that acquisition organizations can develop battle managers with more efficiency,
reduced development times, and higher quality than current state-of-the-practice methods.
[Crnkovic 02] The high-level architectural view for the BMK is depicted in Figure 1:

 25

Demonstration

Software engineers should consider developing a prototype of the BMK framework and
demonstrating its behavior, capabilities, and limitations. They should test this prototype
to determine the degree of system behavior predictability with respect to state transitions
and tolerance to battlespace environmental variables.

While the demonstration is not intended to be an exhaustive test, it will offer a degree of
robustness to accompany the capabilities of the BMK prototype. (N.B.: Robustness is
defined as the characteristic of a system that is failure and fault tolerant. Such a system
handles unexpected states in a manner that minimizes performance degradation, data
corruption, and incorrect output.)

We propose the following partial list of metrics be used as part of the BMK
demonstration:

1. Maximum number of concurrent tracks

2. Percentage of processed tracks (birth to death) to total received tracks

3. Percentage of correlated tracks to total correlation opportunities

Figure 1. BMK and Components

BMDS Battle Manager

Rules of Engagement

Discrimination

Estimated Launch
Point

Predicted Impact
Point

Estimated Intercept
Point

Correlation Feature-Aided
Tracking

C2 System 1

C2 System 2

C2 System 3

C2 System N

Sensor 1

Sensor 2

Sensor 3

Sensor N

Weapon 1

Weapon 2

Weapon 3

Weapon N

BMDS Battle Manager

Rules of Engagement

Discrimination

Estimated Launch
Point

Predicted Impact
Point

Estimated Intercept
Point

Correlation Feature-Aided
Tracking

C2 System 1

C2 System 2

C2 System 3

C2 System N

Sensor 1

Sensor 2

Sensor 3

Sensor N

Weapon 1

Weapon 2

Weapon 3

Weapon N

 26

4. Percentage of discriminated tracks to total discrimination opportunities

5. Percentage of weapon/target assignments to total weapon/target pairing
opportunities

6. Percentage of received weapon assignments to total weapon assignment
opportunities

7. Percentage of launch authorizations to total weapon assignment opportunities

8. Percentage of re-engaged tracks to total re-engagement opportunities

9. Percentage of undesired state changes to total illegal and out-of-bounds inputs

10. Percentage of system crashes and system lockups to total illegal and out-of-
bound inputs

Summary of recommendations
1. We envision software engineers realizing the basic functions of battle

management as a kernel that will remain stable over time. Derived from the kill
chain, the BMK will manage the use of the computing resources to ensure that all
time-critical, battle-management events are processed as efficiently as possible.

2. We envision software engineers developing the BMK as a real-time set of system
functionality that addresses its use by warfighters, starting from a high-level
statement of capabilities and refining these statements into successively lower
levels of system artifacts. The system artifacts should be refined from the
perspective of developing test- and verification-ready models (i.e.,
representations of the system-of-systems that are amendable to automated testing
and verification).

3. Software engineers should capture the desired system behavior in the interface
definition rather than depending solely on messaging requirements.

4. Software engineers should construct interfaces for BMD elements such as an
infrared sensor type, a radar type, a kinetic energy weapon, and a directed energy
weapon.

5. Software engineers should develop a formal representation that captures the
desired system behavior of the BMK and verify the formal representation against
the expected BMK properties to achieve the level of desired predictable BMK
behavior.

6. Software engineers should consider developing the formal representation of the
BMK by using temporal logic to describe the functional specifications of the
BMK.

7. Software engineers should verify the functional specifications with the use of a
model-checking tool to determine the degree of system behavior predictability
with respect to state transitions and tolerance to battlespace environmental
variables.

 27

8. To avoid the state-explosion problem, software engineers should carefully model
the fundamental behavior of the BMK rather than a comprehensive specification
of the BMK.

9. By incorporating assertions developed from the functional model and verified by
the model-checking effort into the BMK, software engineers can develop
embedded automatic test generation capabilities.

10. Software engineers should incorporate assertions and error-handling schemes
developed from the functional model and verified by the model-checking effort
into the BMK.

11. Software engineers should develop the required BMK interfaces as type
interfaces that define the behavior of each interface and the required
specifications to realize each interface.

12. For ease of integration and maintainability, we propose the development of
software components for the features that typically experience the majority of
changes.

Proposed advances
It is our belief that software engineers can develop a BMK that addresses the five basic
functions and fulfills basic warfighter usage requirements for a battle-management
capability. We believe that acquisition agencies within DoD can use the proposed BMK
framework as a point of departure in the development of such systems with the potential
benefits of acquiring systems on time, within budget, and with the desired level of
capability as defined by the warfighters.

In addition, we believe that this approach will extend the software engineering body of
knowledge as follows:

1. Demonstrate that acquisition organizations can develop real-time systems that
exhibit a high degree of system behavior predictability in a large distributed system.

2. Provide a battle-management kernel that acquisition organizations can base
future battle-management system developments on the battle-management kernel.

 28

Glossary

Acquisition: The process in which the Department of Defense obtains materiel solutions
to identified problems in mission need statements.

Assertion: A predicate expression whose value is either true or false.

Algorithm: A set of logical and mathematical processes to accomplish a given function
with a processor or computer.

Ballistic missile: A rocket-propelled vehicle moving under its own momentum and the
force of gravity that does not rely upon aerodynamic surfaces to produce lift and
consequently follows a ballistic trajectory when thrust is terminated.

Ballistic missile defense: All active and passive measures designed to detect, identify,
track, and defeat attacking ballistic missiles (and entities), in both strategic and theater
tactical roles, during any portion of their flight trajectory (boost, ascent, midcourse, or
terminal) or to nullify or reduce the effectiveness of such an attack.

Battle management: The decisions and actions executed in direct response to the
activities of enemy forces in support of the Joint Chiefs of Staff’s precision engagement
concept.

Battle-management kernel: The software that contains the basic functions of battle
management that will remain stable over time. Derived from the kill chain, these basic
battle-management functions are called tasks, and will manage the use of the system’s
computing resources to ensure that all time-critical, battle-management events are
processed as efficiently as possible.

Battlespace: All aspects of air, surface, subsurface, land, space, and the electromagnetic
spectrum that encompass the area of influence and area of interest.

Central processing unit: A section of a computer responsible for execution of
programs. This section manipulates the data, generates control signals, and stores results.

Chain of command: The succession of commanding officers from a superior to a
subordinate through which command is exercised.

Classification: The process of establishing the type of an object being tracked. The
object type out of the classification process may be high level (e.g., an air vehicle, an
ASM, a TBM object, an interceptor missile, or unknown type) or very specific (e.g.,
SCUD B, SM-2, etc.

Coalition: An ad hoc arrangement between two or more nations for common action.

Combatant command: One of the unified or specified combatant commands established
by the President.

Combatant command (command authority): Non-transferable command authority
established by Title 10, United States Code, section 164, exercised only by commanders

 29

of unified or specified combatant commands unless otherwise directed by the President or
the Secretary of Defense. Combatant command (command authority) is the authority of a
combatant commander to perform those functions of command over assigned forces
involving organizing and employing commands and forces, assigning tasks, designating
objectives, and giving authoritative direction over all aspects of military operations, joint
training, and logistics necessary to accomplish the missions assigned to the command.
Also called COCOM.

Combatant commander: A commander in chief of one of the unified or specified
combatant commands established by the President.

Combat information: Unevaluated data gathered by or provided directly to the tactical
commander that, due to its highly perishable nature or the criticality of the situation,
cannot be processed into tactical intelligence in time to satisfy the users’ tactical
intelligence requirements.

Command: 1. The authority that a commander in the Armed Forces lawfully exercises
over subordinates by virtue of rank or assignment. Command includes the authority and
responsibility for effectively using available resources and for planning the employment
of, organizing, directing, coordinating, and controlling military forces for the
accomplishment of assigned missions. It also includes responsibility for health, welfare,
morale, and discipline of assigned personnel. 2. An order given by a commander; that is,
the will of the commander expressed for the purpose of bringing about a particular action.
3. A unit or units, an organization, or an area under the command of one individual.

Command and control: The exercise of authority and direction by a properly designated
commander over assigned and attached forces in the accomplishment of the mission.
Command and control functions are performed through an arrangement of personnel,
equipment, communications, facilities, and procedures employed by a commander in
planning, directing, coordinating, and controlling forces and operations in the
accomplishment of the mission.

Command and control system: The facilities, equipment, communications, procedures,
and personnel essential to a commander for planning, directing, and controlling
operations of assigned forces pursuant to the missions assigned.

Command, Control, Communications, and Computer Systems (C4 Systems).
Integrated systems of doctrine, procedures, organizational structures, personnel,
equipment, facilities, and communications designed to support a commander’s exercise
of command and control through all phases of the operational continuum.

Command and control warfare: The integrated use of operations security (OPSEC),
military deception, psychological operations (PSYOP), electronic warfare (EW), and
physical destruction, mutually supported by intelligence, to deny information to,
influence, degrade, or destroy adversary command and control capabilities, while
protecting friendly command and control capabilities against such actions. Command and
control warfare applies across the operational continuum and at all levels of conflict. Also
called C2W. C2W is both offensive and defensive: a. counter-C2-To prevent effective C2

 30

of adversary forces by denying information to, influencing, degrading, or destroying the
adversary C2 system. b. C2-protection-To maintain effective command and control of
own forces by turning to friendly advantage or negating adversary efforts to deny
information to, influence, degrade, or destroy the friendly C2 system.

Component: A software unit of composition with contractually specified interfaces and
explicit context dependencies.

Control: Authority which may be less than full command exercised by a commander
over part of the activities of subordinate or other organizations.

Correlation: The process of assigning or computing weights to determine that two or
more sensed tracks are for the same object.

Crisis action planning: The time-sensitive planning for the deployment, employment,
and sustainment of assigned and allocated forces and resources that occurs in response to
a situation that may result in actual military operations. Crisis action planners base their
plan on the circumstances that exist at the time planning occurs. Also called CAP

Data: A representation of individual facts, concepts, or instructions in a manner suitable
for communication, interpretation, or processing by humans or by automatic means.

Deliberate planning: A planning process for the deployment and employment of
apportioned forces and resources that occurs in response to a hypothetical situation.
Deliberate planners rely heavily on assumptions regarding the circumstances that will
exist when the plan is executed.

Detection: Discrimination of an object from its background and its assignment to the
class of potentially interesting objects.

Discrimination: Process that allows selecting lethal from non-lethal targets in same
threat complex. The process usually involves sensors, signal/data processors, feature
extraction algorithms, and decision architectures.

Domain analysis: The process of identifying and formalizing constraints on input, state,
and output values.

Dominant maneuver: The ability of joint forces to gain positional advantage with
decisive speed and overwhelming operational tempo in the achievement of assigned
military tasks.

Endo-atmospheric: Within the earth’s atmosphere. The altitude commonly used to
separate the endo- and exo-atmospheric regimes varies from 100 km to 120 km.

Engage: A fire control order used to direct or authorize units and/or weapon systems to
fire on a designated target.

Engagement: A tactical conflict, usually between opposing lower echelons maneuver
forces.

Exo-atmospheric: Above the atmosphere where the drag is negligible. The altitude
commonly used to separate the endo- and exo-atmospheric regimes varies from 100 km
to 120 km.

 31

Failure: The inability of a system or component to perform a required function within
specified limits.

Fault: An incorrect statement, step, process, or data definition in a software program.

Focused logistics: The ability to provide the joint force the right personnel, equipment,
and supplies in the right place, at the right time, and in the right quantity, across the full
range of military operations.

Full dimensional protection: The ability of the joint force to protect its personnel and
other assets required to decisively execute assigned tasks.

Glueware: The software application that integrates a number of components through
interfaces to the software application for the purpose of achieving a broader capability
than any of the individual components.

Identification: The process of determining that a tracked object is a friendly, neutral,
hostile, or unknown object, or the result of that process.

Information: The meaning that a human assigns to data by means of the known
conventions used in their representation.

Intelligence: The product resulting from the collection, processing, integration, analysis,
evaluation, and interpretation of available information concerning foreign countries or
areas.

Interface: Software that enables an application to work with user, another application,
operating system, or computer hardware.

Interoperability: The ability of systems, units, or forces to provide services to and
accept services from other systems, units, or forces and to use the services so exchanged
to enable them to operate effectively together.

Joint: Connotes activities, operations, organizations, etc., in which elements of two or
more Military Departments participate.

Joint force: A general term applied to a force composed of significant elements, assigned
or attached, of two or more Military Departments, operating under a single joint force
commander.

Joint task force: A joint force that is constituted and so designated by the Secretary of
Defense, a combatant commander, a sub-unified commander, or an existing joint task
force commander.

Kernel (real-time): A real-time kernel is software that manages the use of the CPU and
memory to ensure that all time-critical events are processed as efficiently as possible. A
real-time kernel can help simplify a software design because it allows a project to be
divided into multiple independent elements called tasks.

Kernel (battle management): The part of a system, including software, that when all
functions not essential to battle management are taken away, remains, and that functions
even when one or more non-essential functions are disabled.

 32

Kill assessment: A process, based on sensor data, that examines in real time the results
of an engagement and determines whether the warhead was broken open or not. Based
on the outcome the battle manager would decide to or not to fire again at that target.

Kill chain: The sequence of events that must occur for a threat to successfully engage
and kill its target. For this dissertation, the elements of the kill chain are: Detect, Track,
Assign Weapon, Engage, and Kill Assessment.

Link 16 (formerly TADIL-J): A secure, high capacity, jam-resistant, node-less data
link which uses the Joint Tactical Information Distribution System (JTIDS) transmission
characteristics and the protocols, conventions, and fixed-length message formats defined
by the JTIDS Technical Interface Design Plan (TIDP).

Mission: The task, together with the purpose, that clearly indicates the action to be taken
and the reason therefore.

Mission type order: Order to a unit to perform a mission without specifying how it is to
be accomplished.

Model checking: The systematic approach for testing functional assertions and
substantiating the desired system behavior in the model. Model checking is not a proof of
correctness; however, model checking involves creating functional models of a system
and analyzing the model against the formal representations of the desired behavior.

Operational control: Transferable command authority that may be exercised by
commanders at any echelon at or below the level of combatant command. Operational
control is inherent in Combatant Command (command authority) and is the authority to
perform those functions of command over subordinate forces involving organizing and
employing commands and forces, assigning tasks, designating objectives, and giving
authoritative direction necessary to accomplish the mission. Also called OPCON.

Planning: That military planning that produces either an Operation Plan (OPLAN) or an
Operations Order (OPORD) to employ military force against an adversary.

Precision engagement: The ability of joint forces to locate, surveil, discern, and track
objectives or targets; select, organize, and use the correct systems; generate desired
effects, assess results; and reengage with decisive speed and overwhelming operational
tempo as required, throughout the full range of military operations.

Predicate: A function that represents the truth or falsehood of some condition.

Real-time: A problem, system, or application that is concurrent in nature and has timing
constraints whereby incoming events must be processed within a given timeframe.

Robustness: A characteristic of a system that is failure and fault tolerant. Such a system
handles unexpected states in a manner that minimizes performance degradation, data
corruption, and incorrect output.

 33

Rules of engagement: Directives issued by competent military authority that delineate
the circumstances and limitations under which United States forces will initiate and/or
continue combat engagement with other forces encountered. Also called ROE.

Schedulability: The determination of whether a group of tasks, whose individual CPU
utilization is known, will meet their deadlines.

Sensor: A device that responds to a physical stimulus (as heat, light, sound, pressure,
magnetism, or a particular motion) and transmits a resulting impulse for measurement or
operating a control.

Sensor netting: Process of sharing information about targets of interest collected by two
or more sensors with the objective of improving defense’s knowledge of targets.
Objective of sensor netting is to improve accuracy of sensor data by correlating, fusing,
integrating, weighting, or associating sensed information at one or more locations in
netted community. Process can be centralized, distributed, or hierarchical.

Situational awareness: Perception of available facts, comprehension of the facts in
relation to the individual’s expert knowledge, and projecting how the situation is likely to
develop in the future.

Specified command: A command that has broad continuing missions and that is
established by the President through the Secretary of Defense with the advice and
assistance of the Chairman of the Joint Chiefs of Staff. It normally is composed of forces
from a single Military Department. Also called specified combatant command.

State: A recognizable situation that exists over an interval of time.

State explosion: The condition in which the size of the state space grows exponentially.

State transition: A change in state that is caused by an input event.

Surveillance: The systematic observation of aerospace, surface or subsurface areas,
places, persons, or things, by visual, aural, electronic, photographic, or other means.

System-of-systems: An amalgamation of legacy systems and developing systems that
provide an enhanced military capability greater than that of any of the individual systems
within the system-of-systems.

Tactical control: The detailed and, usually, local direction and control of movements or
maneuvers necessary to accomplish missions or tasks assigned. Also called TACON.

Targeting: 1. The process of selecting targets and matching the appropriate response to
them taking account of operational requirements and capabilities. 2. The analysis of
enemy situations relative to the commander’s mission, objectives, and capabilities at the
commander’s disposal, to identify and nominate specific vulnerabilities that, if exploited,
will accomplish the commander’s purpose through delaying, disrupting, disabling, or
destroying enemy forces or resources critical to the enemy.

Task: A task is a program that competes for CPU time and is generally written as an
infinite loop

 34

Temporal logic: An extension of propositional logic that incorporates special operators
that cater for time. With temporal logic one can specify how components, protocols,
objects, modules, procedures and functions behave as time progresses. The specification
is done with temporal logic statements that make assertions about properties and
relationships in the past, present, and the future.

Test-ready model: A model that contains sufficient information to automatically
produce test cases for its implementation.

Time-critical task: A task for which there is a deadline for which the task must usually
(soft) or must always (hard) meet.

Time-critical targets: Those targets requiring immediate response because they pose (or
will soon pose) a clear and present danger to friendly forces, or are highly lucrative,
fleeting targets of opportunity.

Track: 1. Estimated position/velocity states and a representation of the uncertainty of
the estimate for an object or unresolved cluster of objects based on filtered observations
from one or more sensors. 2. Estimated trajectory of an apparent object or group of
objects. 3. Sequence of observations judged to be from the same object or group of
objects

Unified command: A command with broad continuing missions under a single
commander and composed of forces from two or more Military Departments, and which
is established by the President, through the Secretary of Defense with the advice and
assistance of the Chairman of the Joint Chiefs of Staff. Also called unified combatant
command.

Validation: Confirmation by examination and provisions of objective evidence that the
particular requirements for a specific intended use are fulfilled.

Verification: Confirmation by examiniation and provisions of objective evidence that
specified requirements have been fulfilled.

Weapon tasking: Message sent to weapon by battle manager that contains information
such as target-weapon pairing, launch time, etc.

 35

Acronyms

AADC Area air defense commander

ABL Airborne laser

ABM Anti-ballistic missile

ACTD Advanced concept technology demonstration

AD Air defense

ADA Air defense artillery

ADCP Air defense communications platform

ADG Active defense group

ALERT Attack and launch early report to theater

AO Area of Operations

AOA Amphibious objective area

AOC Air Operations Center

AOR Area of responsibility

ATACMS Army tactical missile system

ATO Air tasking order

AWACS Airborne warning and control system

BDA Battle damage assessment

BMC4I Battle-management command, control, communications, computers, and
intelligence

BMD Ballistic missile defense

BMDS Ballistic missile defense system

BMK Battle-management kernel

BPI Boost-phase intercept

CAP Crisis action planning

C2 Command and control CAP Combat air patrol

C3I Command, Control, Communications, and intelligence

 36

CEC Cooperative engagement capability

CENTCOM United States Central Command

CEP Circular error probable

CIC Combat information center

CJCS Chairman, Joint Chiefs of Staff

CM Configuration management

CO Commanding officer

COA Course of action

COCOM Combatant Commander

COEA Cost and operational effectiveness analysis

CONOPS Concept of operations

CONPLAN Operations plan in concept format

CONUS Continental United States (excluding Alaska and Hawaii)

COP Common operational picture

COTS Commercial off the shelf

CPU Central processing unit

CRC Control and reporting center

DAL Defended asset list

DE Directed energy

DIA Defense Intelligence Agency

DII COE Defense information infrastructure common operating environment

DISA Defense Information Systems Agency

DoD Department of Defense

DSP Defense Support Program

EO Electrical-optical

EUCOM United States European Command

EW Early warning

 37

EXORD Execute order

GAO General Accounting Office

GBI Ground-based interceptor

GBR [THAAD] Ground-based radar

GCCS Global command and control system

GEM Guidance enhanced missile (PATRIOT)

GGIG Global information grid

GMD Ground-based Missile Defense

GPS Global Positioning System

HQ Headquarters

IA Information assurance

ICBM Intercontinental ballistic missile

ICC Information Coordination Central (PATRIOT)

IER Information exchange requirement

IOC Initial operational capability

IPB Intelligence preparation of the battle space

IR Infrared

IRBM Intermediate-range ballistic missile

IRST Infrared search and track

ITW/AA Integrated tactical warning/attack assessment

JCS Joint Chiefs of Staff

JCTN Joint composite tracking network

JDN Joint data network

JEZ Joint engagement zone

JFACC Joint force air component commander

JFC Joint force commander

JFCOM Joint Forces Command

 38

JFMCC Joint force maritime component commander

JIC Joint intelligence center

JMCIS Joint maritime command information system

JP Joint publication

JPN Joint planning network

JS Joint staff

JSOC Joint Special Operations Command

JSTARS Joint surveillance and target attack radar system

JTA Joint technical architecture

JTAGS Joint tactical ground station

JTF Joint task force

JTIDS Joint tactical information distribution system

JTMD Joint theater missile defense

KE Kinetic energy

KV Kill vehicle

KW Kinetic warhead

MDA Missile Defense Agency

MEADS Medium extended air defense system

MEZ Missile engagement zone

MNS Mission need statement

MLRS Multiple launch rocket system

MRBM Medium-range ballistic missile

NATO North Atlantic Treaty Organization

NBC nuclear, biological, and chemical

NCA National Command Authority

NMCC National Military Command Center

NMD National missile defense

 39

NORTHCOM United States Northern Command

OCONUS Outside the continental United States

OOAD Object-oriented analysis and design

OOB Operational order of battle

OODA Observe, orient, decide, act

OPLAN Operations plan

OPORD Operations order

OSD Office of the Secretary of Defense

PAC Patriot advanced capability

PACOM Pacific Command

PATRIOT phased array tracking radar intercept on target

PDAL Prioritized defended asset list

Pk Probability of kill

POM Program objective memorandum

R&D Research and development

RAS Replenishment at sea

RCS Radar cross-section

R&D Research and development

RDT&E Research, development, test, and evaluation

RF Radio frequency

ROE Rules of engagement

RV Reentry vehicle

SAM Surface-to-air missile

SATCOM Satellite communications

SBIRS-LOW Space-based infrared system-low earth orbit

SBWS Space-based warning system (DSP + TES)

SDI Strategic Defense Initiative

 40

SMTS Space and missile tracking system

SOCOM United States Special Operations Command

SOF Special operations forces

STRATCOM United States Strategic Command

SRBM Short-range ballistic missile

TACON Tactical control

TAOC Tactical air operations center

TBM Theater ballistic missile

TBM-WMD Theater ballistic missile—weapons of mass destruction

TBMD Theater ballistic missile defense

TCT Time critical target

TDDS Tactical data distribution system

TEL Transporter-erector-launcher (for TBM)

THAAD Theater high-altitude area defense

TIBS Tactical information broadcast service

TLAM Tomahawk land attack missile

TM Theater missile

TMD Theater missile defense

TOC Tactical operations center

TPFDD Time-phased force and deployment data

TPFDL Time-phased force and deployment list

TRAP TRE and related applications (now TDDS)

TRE Tactical receive equipment

UAV Unmanned aerial vehicle

UCP Unified Command Plan

UML Unified Modeling Language

UOES User operational evaluation system

 41

USA United States Army

USAF United States Air Force

USMC United States Marine Corps

USN United States Navy

VCJCS Vice-Chairman, Joint Chiefs of Staff

WMD Weapons of mass destruction

 42

Glossary of Logic Symbols
& and

| or

<=> if and only if

=> implies

> greater than

< less than

> greater than or equal to

< less than or equal to

∩ intersect

U union

= equals

≠ does not equal

∀ for all (∀ x means that for all x…)

∃ there exists (∃ x means that there exists an x such that…)

¬ not

// comment

 43

References

[Bachman 02] Bachman, F., Bass, L., Clements, P., Garlan, D., Ivers, J., Little, R.,

Nord, R., and Stafford, J. Documenting software architecture:
Documenting interfaces. Technical Note CMU/SEI-2002-TN-015,
Software Engineering Institute, Pittsburgh, Penn., June 2002.

[Binder 01] Binder, R. V. Testing Object-Oriented Systems: Models, Patterns,

and Tools, Reading, Mass.: Addison-Wesley, June 2001.

[Booch 94] Booch, G. Object-Oriented Analysis and Design with Applications.

Reading, Mass.: Addison-Wesley, 2nd ed., 1994.

[Boyd 86] Boyd, J. R. “A discourse on winning and losing: Patterns of

conflict.” Lecture notes, Dec. 1986. (Typewritten)

[Caffall 03] Caffall, D. S. Conceptual Framework Approach for System-of-
Systems Software Developments, Master’s Thesis, Naval
Postgraduate School, Monterey, Calif., Mar. 2003.

[Chairman 00] US Department of Defense. Joint Vision 2020. Washington, D.C.:

US Government Printing Office, June 2000.

[Chen 03] Chen, X. and Hsieh, H. Case studies of model checking for

embedded system designs. In Proc. Third Int. Conf. on
Application of Concurrency to System Design, IEEE (Guimarães,
Portugal, June 2003), pp. 20-28.

[Clarke 01] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. Progress

on the state explosion problem in model checking. In Wilhelm, R.,
ed., Lecture Notes in Computer Science: Informatics - 10 Years
Back. 10 Years Ahead, Vol. 2000, Heidelberg, Ger.: Springer-
Verlag, 2001, pp. 176-194.

[Coram 02] Coram, R. Boyd: The Fighter Pilot Who Changed the Art of War.

New York: Little Brown and Co., 2002.

[Crnkovic 02] Crnkovic, I. and Larsson, M., eds. Building Reliable Component-
Based Software Systems. Norwood, Mass.: Artech House, 2002.

[Gallardo 03] del Mar Gallardo, M., Martínez, J., Merino, P., and Pimentel, E.

Abstract model checking and refinement of temporal logic in
αSPIN. In Proc. Third Int. Conf. on Application of Concurrency to
System Design, IEEE (Guimarães, Port., June 2003), pp. 245-246.

 44

[DA 96] US Department of the Army. Tactics, Techniques, and Procedures
for the Targeting Process. Field Manual 6-20-10, May 1996.

[DOD 02] US Department of Defense. Tactical Digital Information Link

(TADIL) J Message Standard. MIL-STD-6016A, Joint Technical
Architecture - Version 4.0, July 2002.

[Douglas 99] Douglass, B. P. Doing Hard Time: Developing Real-Time

Systems with UML, Objects, Frameworks, and Patterns. Reading,
Mass.: Addison-Wesley, 1999.

[Drusinsky 02] Drusinsky, D. ESC: Formal spec languages ensure design code

quality, EE Times, Mar. 7, 2002.

[Erwin 02] Erwin, S. I. General Jumper: Time to change traditional program

advocacy, National Defense, July 2002, pp. 14-15.

[GAO 97] National Missile Defense: Schedule and Technical Risks

Represent Significant Development Challenges. Report
GAO/NSIAD-98-28, US General Accounting Office, Washington,
D.C., Dec. 1997.

[Gluch 99] Gluch, D. P. and Brockway, J. An introduction to software

engineering practices using model-based verification. Technical
Report CMU/SEI-99-TR-005, Software Engineering Institute,
Pittsburgh, Penn., Apr. 1999.

[Guaspari 00] Guaspari, D. and Naydich, D. Analysis of Real-Time Code by

Model Checking,” in Proc. Nineteenth Digital Avionics Systems
Conf., IEEE (Philadelphia., Penn., Oct. 2000), Vol. 1, pp. 1D5.1-
1D5.8.

[JCS 03] US Department of Defense. Department of Defense Dictionary of

Military and Associated Terms. Joint Pub. 1-02, Apr. 12, 2001 (as
amended through May 23, 2003).

[JCS 96] US Department of Defense. Doctrine for Joint Theater Missile

Defense. Joint Pub. 3-01.5, Joint Chiefs of Staff, Feb. 1996.

[JFC 03] US Department of Defense. Joint Force Command and Control

Concept to Guide Standing Joint Force Headquarters
Development by 2005. Joint Forces Command, Mar. 5, 2003.

[JFSC 00] US Department of Defense. The Joint Staff Officer’s Guide 2000.

JFSC Pub 1, National Defense University, Joint Forces Staff
College, Norfolk, Va., 2000.

 45

[Kenne 03] Kenne, L. F. Tightening the kill chain: Broadening information

access, Intercom: J. Air Force C4I Community 44, 1 (Jan. 2003):
6-9.

[Leckie 90] Leckie, R. None Died In Vain. New York: Harpers Collins, 1990.

[Lewis 01] Lewis, G. A., Comella-Dorda, S., Gluch, D. P., Hudak, J., and

Weinstock, C. Model-based verification: Analysis guidelines.
Technical Note CMU/SEI-2001-TN-028, Software Engineering
Institute, Pittsburgh, Penn., Dec. 2001.

[Meyers 01] Meyers, C. B., Feiler, P. H., Marz, T. Proc. Real-Time Systems

Engineering Workshop. Special Report CMU/SEI-2001-SR-022,
Software Engineering Institute, Pittsburgh, Penn., Aug. 2001.

[Parnas 01] Parnas, David L. Software Fundamentals: Collected Papers by

David L. Parnas. Reading, Mass.: Addison-Wesley, 2001.

[Rempt 01] Rempt, R. P. The Navy in the twenty-first century, Part II:

Theater Air and Missile Defense, Johns Hopkins APL Technical
Digest 22, 1 (2001): 21-28.

[Selic 03] Selic, B. The pragmatics of model-driven development, IEEE

Software, Sept./Oct. 2003, pp. 19-25.

[Sha 93] Sha, L. and Sathaye, S. Distributed real-time system design:

Theoretical concepts and applications. Technical Report
CMU/SEI-93-TR-002, Software Engineering Institute, Pittsburgh,
Penn., Mar. 1993.

[Stewart 01] Stewart, D. B. Twenty-five most common mistakes with real-time

software development. In Proc. Embedded Systems Conf. (San
Francisco, Calif., Apr. 2001), Gilroy, Calif.: CMP Media.

[Szyperski 02] Szyperski, C. Component Software: Beyond Object-Oriented

Programming. Reading, Mass.: Addison-Wesley, 2nd ed., 2002.

 46

Initial Distribution List

1. Defense Technical Information Center

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 013

Naval Postgraduate School
Monterey, CA 93943-5100

3. Technical report Office, Code 09

Naval Postgraduate School
Monterey, CA 93943-5138

4. James Bret Michael, Code CS/Mj
Associate Professor
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118
bmichael@nps.navy.mil

5. COL Kevin Greaney USA

 Director of Modeling and Simulation
 Deputate for System Engineering
 Missile Defense Agency
 7100 Defense Pentagon
 Washington, D.C. 20301-7100

 Kevin.Greaney@mda.osd.mil

6. Dale Scott Caffall

 C2BMC Chief Engineer
 Missile Defense Agency
 7100 Defense Pentagon
 Washington, D.C. 20301-7100
 Butch.Caffall@mda.osd.mil

